

SELF STANDING NANOPARTICLE NETWORKS/SCAFFOLDS WITH APPLICATIONS IN DRUG DELIVERY, TISSUE ENGINEERING, CATALYSIS ETC.

NCL Innovations: Solutions from CSIR India

Technology

- A novel process of preparing self standing, crosslinked networks (scaffolds)
 of nanoparticles from commonly available materials as
 - Metalllic particles
 - Inorganic particles
 - Organic and polymeric compounds
 - Semi conducting and magnetic particles
- Scaffolds have controllable mesh size
 - Pore size ranges from 500 nm to 1 mm (nano to micro porous)
 - Particle volume fraction is between 0.5 to 50%
- Directionality of the pore formation can also be precisely maneuvered
- Has a wide range of applications in various areas

Applications

- Drug delivery- Inorganic/organic delivery scaffolds for Nitric Oxide- an important bioregulatory agent
- Tissue engineering- Cell seeding scaffolds
- Proposed applications of scaffolds
 - Cell growth substrate
 - Materials for solar cells
 - Electrical/thermal insulators
- Catalysis- Catalyst support for small sizes available for diffusion of reactant molecules
- Metamaterials*- Electromagnetic devices- ideally gold nano particles
- Electronic devices
- Chromatography

^{*}A meta material is a substance that derives its electromagnetic properties from its structure rather than from its chemical composition.

Market Potential

- The market for nanomaterials in the US alone was estimated to be around \$1.4 billion in 2008¹; the demand for nanomaterials is projected to grow at an impressive 21% per year till 2013² indicating a significant market potential
- Metamaterials had a European market size of EUR 133 million in 2007 and are expected to grow to EUR 2.1 billion in 2013, at a compound annual growth rate (CAGR) of $26.5 \%^3$
- The global market for drug delivery has been projected to exceed \$57
 billion by 2012⁴

³Nanostructured Metamaterials Exchange between experts in electromagnetics and material science- Report, Pg 3. (http://ec.europa.eu/research/industrial_technologies/pdf/brochure-metamaterials_en.pdf)- viewed 03/06/11

¹ http://www.freedoniagroup.com/Nanomaterials.html viewed 01/08/11

² http://www.freedoniagroup.com/World-Nanomaterials.html viewed 01/08/11

Value

- Generic production procedure
- Can be prepared from readily available materials
 - Metallic particles such as gold
 - Inorganic particles such as silica
 - Organic and polymeric compounds
 - Semiconducting and magnetic particles
- Can be formed in to ordered, structured phase, lamellar, spongy, cubicpreferably hexagonal network
- Has a precisely controllable directionality and pore size

Technology Status, IP Status

- Patent application filed
- Demonstrated at lab scale
- Ready to be licensed/commercialized

Links & References

- Self-Standing Three-Dimensional Networks of Nanoparticles With Controllable Morphology by Dynamic Templating of Surfactant Hexagonal Domains (2011) Chem. Mater., 23 (6), 1448–1455
- Draper, M. et al. (2011) Self-Assembly and Shape Morphology of Liquid-Crystalline Gold Metamaterials, Adv. Funct. Mater., 21, 1260–127.
- Patent application
 - WO2010070679

Contact Info:

Dr. Magesh N.

Scientist, NCL Innovations National Chemical Laboratory Pune - 411008

Phone: +91-20-2590-2982 Fax: +91-20-2590-2983

Email: m(dot)nandagopal(at)ncl(dot)res(dot)in

Summary

Technology Summary	
Technology title	Self standing nanoparticle networks/scaffolds with applications In drug delivery, tissue engineering, catalysis etc.
Industry /sector	Pharmaceuticals, tissue engineering, advanced materials
Year of development	2009
Related patents (with links)	Patent application filed
Technology readiness level	Demonstrated at lab scale
Licensing status	Ready to be licensed /commercialized
Encumbrances	None
Availability	Yes

